Private Image Retrieval
Amina Bassit
Computer Vision over Homomorphically Encrypted Data
CVPR 2025 Tutorial
June 12, 2025
Embeddings are vulnerable to inversion attacks and reveal personal information
Enhancing the efficiency and scalability of similarity measures under FHE
$\log_2(d)-1$ | $1$ | $\log_2(d)$ |
MFIP lookup table applies this idea to reduce latency in face matching.
$\log_2(d)-1$ | $0$ | $\log_2(d)$ |
Removing multiplications decreases latency by half.
$\log_2(d)-1$ | $1$ | $\log_2(d)$ |
$\log_2(d)-1$ | $0$ | $\log_2(d)$ |
$d \cdot \left\lceil \frac{d \cdot m}{c} \right\rceil$ | $\left\lceil \frac{d \cdot m}{c} \right\rceil$ | $(d-1) \cdot \left\lceil \frac{d \cdot m}{c} \right\rceil$ |
$(d-1) \cdot \left\lceil \frac{m}{c} \right\rceil$ | $d \cdot \left\lceil \frac{m}{c} \right\rceil$ | $0$ |
$(d-1) \cdot \left\lceil \frac{m}{c} \right\rceil$ | $0$ | $0$ |
$(d-1) \cdot \left\lceil \frac{m}{c} \right\rceil$ | $d \cdot \left\lceil \frac{m}{c} \right\rceil$ | $0$ |
$(d-1) \cdot \left\lceil \frac{m}{c} \right\rceil$ | $0$ | $0$ |
Their complexity still depends on $d$.
Lookup table-based approach is practical (1:1M in $1.28s$)
FHE-based search takes $5min$ for a 1 Billion vector gallery with up to 512-dim
Solutions | Application | $K$ | $\#M_{HE}$ | $\#R_{HE}$ | $\#A_{HE}$ | Storage | Protected Reference | Protected Probe | Runtime (1:1Million) |
---|---|---|---|---|---|---|---|---|---|
SecureFace (linear) | Biometric matching | $m$ | 1 | \(\log_2 \left( \frac{\text{RingDim}}{2} \right)\) | \(\log_2 \left( \frac{\text{RingDim}}{2} \right)\) | \(d \cdot m\) |
Encrypted
|
Encrypted
|
8.67h
|
MFIPv2 (linear) | Biometric matching | \(m\) | 0 | \(\log_2 \left( \frac{\text{RingDim}}{2} \right)\) | \(\log_2 \left( \frac{\text{RingDim}}{2} \right)\) | \(\left( \sum_{i=1}^{d} N_i \right) \cdot m\) |
Permuted & Encrypted
|
Permuted
|
4.7h
|
BOK'+22 | Biometric search | \(\left\lceil \frac{d \cdot m}{c} \right\rceil\) | 1 | \(d - 1\) | \(d\) | \(\left\lceil \frac{d \cdot m}{c} \right\rceil\) |
Encrypted
|
Encrypted
|
12.86h
|
HERS | Biometric search and RAG | \(\left\lceil \frac{m}{c} \right\rceil\) | \(d\) | 0 | \(d - 1\) | \(d \cdot \left\lceil \frac{m}{c} \right\rceil\) |
Encrypted
|
Encrypted
|
38.37s
|
BHV+'25 | Biometric search and CLIP | \(\left\lceil \frac{m}{c} \right\rceil\) | 0 | 0 | \(d - 1\) | \(\left( \sum_{i=1}^{d} N_i \right) \cdot \left\lceil \frac{m}{c} \right\rceil\) |
Permuted & Encrypted
|
Permuted
|
1.28s
|
ScoreUP achieves performance similar to that of IP as the feature quantization level $(2^{\text{bits}})$ increases.